
COGNIZANCE ‘18

EVENT : Quadrone

Abstract

Institute of Radiophysics and Electronics (ECE), Calcutta University

Team Members :-

 AANKIT DAS(cogni1808754)
 ABEER BANERJEE(cogni1808767)
 SINJOY SAHA (cogni1809107)
 SOUMYABROTO BANERJEE (cogni1806812)

Materials required :-

 Quadcopter frame
 Brushless DC Motors (1000KV)
 ESCs (30A)
 Propellers (8"x4.5")
 Lipo battery (2200mAh, 11.1V)
 Arduino Uno
 MPU-6050*
 Radio Transmitter and Receiver (Flysky Model Number : FSCT6B)
 LED (red)
 Diode (1N4007)
 Resistors

*Note: The MPU-6050 3-axis gyro-accelerometer IC has been used as the 2-axis stabilisation unit was
unavailable at the time and location of making the quadcopter. However, we haven't used the 3rd axis
input from the MPU-6050. If need arises, we may show in Arduino code the 3rd axis input is disabled.

SCHEMATIC :-

Procedure : -

- Hardware

 All hardware components are assembled as per guidelines.
 The electronics are put together and soldered as the above schematic. For temporary

connections wire connectors and jumper cables are used.
 The diode prevents current from the battery to flow into the USB while the Arduino is in Serial

connection and cause a burnout.
 The LED serves as a low-power output of the battery indicator.
 The propellers are of 8" instead of the traditional 10" with 1000kV BLDC motors to shed some

load off the motors and also to have quicker response during operations at higher speeds.
 The motors on the main diagonal rotate clockwise and vice versa on the other to prevent

unnecessary yawing.

- Software

 All programming is done on the Arduino IDE.
 The setup() function sets up the Arduino as a flight controller by taking the necessary

parameters like the Tx-Rx connection and the ESCs into account.
 The main loop() function does the following functions:

1. Takes input from the gyro-accelerometer.
2. We have sought to Read and Write directly via Registers referring to the Arduino Uno Data

Sheet instead of the usual, conventional way of pinMode() function.
3. Takes command from the radio receiver (which receives signals from the user controlled

transmitter).
4. Tries to equate the two inputs, for instance if the user wants a -5° pitch, the gyro should also

be sending -5° pitch, letting us know that the quadcopter carried out the required operation.
5. We have used a Complimentary Filter instead of Kalman Filter, for the complexity faced by

using a Kalman Filter.
6. Before the desired values are sent to the ESCs, they get weighted by a PID (proportional-

integral-differential) controlling step, which is necessary for the stabilisation and fluid
handling of the quadcopter.

7. The PID gains are calibrated by a Trial and Error Mechanism till Stability is reached.
8. The PID constants are then calculated using the PID equation and summed up under PID

variables for a certain MPU controlled data.

9. PID=Kp * error(t) + Ki ∫
0

t

error (τ)dτ + Kd
d (error (t))

dt

 10. The weighted values are sent to ESCs, the response is checked .

 The source code(s) includes the following HEADER files:
1. Servo.h
2. Wire.h
3. Eeprom.h

PROJECT FUNDED BY :-

 INSTITUTE OF RADIOPHYSICS AND ELECTRONICS, CALCUTTA UNIVERSITY
 TEQIP-PHASE III, CALCUTTA UNIVERSITY

VOTE OF THANKS :-

In the end we would like to thank all our Professors especially our Head of the Department, Dr.Debatosh
Guha who we are lucky to have as a part of our daily life, all of those whose advices were
unputdownable, last but not the least to seniors who constantly helped us through thick and thin, being
the kernel of insipiration we had in our journey.

Picture of our Model :-

